System energy
Introduction
The energy of the nuclear system consists of a few terms. Those terms will be presented below. Constants before these terms are dependent on decided functionals. More info about functionals one can find here.
This page is organized as follows. We divide it into sections. One section corresponds to one energy term. First, we describe it we provide a mathematical formula for that term. At the end of each energy section, we will present a pseudo-code that LISE is using during simulations.
Technically LISE is calculating each term for each point of the box. All of the terms are directly dependent on the densities. More info about densities here.
Notation
Two sumation will be often use in this page. Here we present the meaning of them
\begin{align} \rho_{0} &= \int_V{\left(\rho_n + \rho_p\right)}\\ \rho_{1} &= \int_V{\left(\rho_n - \rho_p\right)}, \end{align}
where \rho_n and \rho_p, corresponds to density of neutrons and protons respectively.
Inside the code sections, we will call them rho_0
and rho_1
respectively, but yet inside the code it is a one dimensional array that contains a sum or a difference of the densities.
This notation will apply also for other densities such as kinetic \tau_{0,1}, anomalous \nu_{0,1} and currents j_{0,1}
Kinetic energy
Kinetic energy is a term devoted to the motion of the nuclei.
\begin{align} E_{kin} &= \tfrac{\hbar c}{m_p + m_n} \int_V \tau_n + \tau_p \\ &= \tfrac{\hbar c}{m_p + m_n} \int_V \tau_0, \end{align}
where mp and mn are the mass of protons and neutrons respectively, τ is kinetic density.
= 0.0
e_kin for ixyz in nxyz:
+= hbarc2m * (density.tau_n[ixyz] + density.tau_p[ixyz]) * dxyz =
e_kin * tau_0[ixyz] * dxyz hbarc2m
Normal density energy
todo: fill explanation
\begin{align} E_{\rho} &= \int_V\ C^\rho_0 \left(\rho_n + \rho_p\right) + \int_V\ C^\rho_1 \left(\rho_n - \rho_p\right) \\ &= \int_V\ (C^\rho_0 \rho_{0} + C^\rho_1 \rho_1), \end{align}
where
\begin{align} C^\rho_0 &= \tfrac{3}{8}t_0\\ C^\rho_1 &= -\tfrac{1}{4}\left(x_0+\tfrac{1}{2}\right) \end{align}
= 0.0
e_rho for ixyz in nxyz:
+= (c_rho_0 * (density.rho_n[ixyz] + density.rho_p[ixyz]) +
e_rho * (density.rho_n[ixyz] - density.rho_p[ixyz]))
c_rho_1 * dxyz
= (c_rho_0 * rho_0[ixyz] + c_rho_1 * rho_1[ixyz]) * dxyz
Normal density kinetic energy todo: naming
todo: fill explanation
\begin{align} E_{\rho\tau} &= C^{\rho\tau}_0 \int_V\ (\rho_n + \rho_p)(\tau_n + \tau_p) + C^{\rho\tau}_1 \int_V\ (\rho_n + \rho_p)(\tau_n - \tau_p) \\ &= C^{\rho\tau}_0 \int_V\ \rho_0\tau_0 + C^{\rho\tau}_1 \int_V\ \rho_1\tau_1, \end{align}
where
\begin{align} C^{\rho\tau}_0 &= \tfrac{3}{16}t_1 + \tfrac{1}{4}t_2\left(x_2 + \tfrac{5}{4}\right)\\ C^{\rho\tau}_1 &= -\tfrac{1}{8} \left[ t_1 \left( x_1 + \tfrac{1}{2} \right) - t_2 \left( x_2 + \tfrac{1}{2} \right) \right] \end{align}
and \tau is described here
= 0.0
e_rhotau for ixyz in nxyz:
+= (c_rhotau_0 *
e_rhotau ((density.rho_n[ixyz] + density.rho_p[ixyz]) * (density.tau_n[ixyz] + density.tau_p[ixyz])) +
*
c_rhotau_1 ((density.rho_n[ixyz] - density.rho_p[ixyz]) * (density.tau_n[ixyz] - density.tau_p[ixyz])))
* dxyz
= (c_rhotau_0 * (density.rho_0[ixyz] * density.tau_0[ixyz]) +
* (density.rho_1[ixyz] * density.tau_1[ixyz]))
c_rhotau_1 * dxyz
Gamma energy
todo: fill explanation
\begin{align} E_\gamma &= C^\gamma_0 \int_V\ (\rho_n+\rho_p)^{\gamma + 2} + C^{\gamma}_1 \int_V\ (\rho_n +\rho_p)^{\gamma} (\rho_n - \rho_p)^{2} \\ &= C^\gamma_0 \int_V\ \rho_0^{\gamma + 2} + C^{\gamma}_1 \int_V\ \rho_0^{\gamma} \rho_1^{2}, \end{align}
where
\begin{align} C^\gamma_0 &= \tfrac{t_3}{16}\\ C^\gamma_1 &= -\tfrac{1}{24}\left(x_3+\tfrac{1}{2}\right)t_3 \end{align}
= 0.0
e_gamma for ixyz in nxyz:
+= (c_gamma_0 * (density.rho_n[ixyz] + density.rho_p)**(gamma+2) +
e_gamma * ((density.rho_n[ixyz] + density.rho_p)[ixyz]**gamma * (density.rho_n[ixyz] - density.rho_p)[ixyz]**2))) * dxyz
c_gamma_1 = (c_gamma_0 * rho_0[ixyz]**(gamma+2) + c_gamma_1 * rho_0[ixyz]**gamma * rho_1[ixyz]**2) * dxyz
Spin-orbit energy
todo: fill explanation
\begin{align} E_{so} &= C^{\nabla J}_0 \int_V\ (\rho_n + \rho_p)(\nabla J_n + \nabla J_p) + C^{\nabla J}_1 \int_V\ (\rho_n - \rho_p) (\nabla J_n - \nabla J_p) \\ &= C^{\nabla J}_0 \int_V\ \rho_0 \nabla J_0 + C^{\nabla J}_1 \int_V\ \rho_1 \nabla J_1, \end{align}
where
\begin{align} C^{\nabla J}_0 &= -\tfrac{3}{4} W_0\\ C^{\nabla J}_1 &= -\tfrac{1}{4} W_0 \end{align}
= 0.0
e_so for ixyz in nxyz:
+= (c_divjj_0 * ((density.rho_n[ixyz] + density.rho_p[ixyz]) * (density.divjj_n[ixyz] + density.divjj_p[ixyz])) +
e_so * ((density.rho_n[ixyz] - density.rho_p[ixyz]) * (density.divjj_n[ixyz] - density.divjj_p[ixyz])))
c_divjj_1 * dxyz
= (c_divjj_0 * (density.rho_0[ixyz] * density.divjj_0[ixyz]) +
* (density.rho_1[ixyz] * density.divjj_1[ixyz]))
c_divjj_1 *= dxyz e_so
Density laplacian energy
todo: fill explanation
\begin{align} E_{\nabla\rho} &= C^\nabla_0 \int_V\ (\rho_n+\rho_p) \nabla (\rho_n+\rho_p) + C^\nabla_1 \int_V\ (\rho_n-\rho_p) \nabla (\rho_n-\rho_p) \\ &= C^\nabla_0 \int_V\ \rho_0 \nabla \rho_0 + C^\nabla_1 \int_V\ \rho_1 \nabla \rho_1, \end{align}
where
\begin{align} C^\nabla_0 &= -\tfrac{1}{16}\left[\tfrac{9}{4}t_1 - t_2\left(x_2+\tfrac{5}{4}\right)\right]\\ C^\nabla_1 &= -\tfrac{1}{32}\left[3t_1 - \left(x_1+\tfrac{1}{2}\right) - t_2\left(x_2+\tfrac{1}{2}\right)\right] \end{align}
= 0.0
e_laprho for ixyz in nxyz:
+= (c_laprho_0 * ((density.rho_n[ixyz] + density.rho_p[ixyz]) * (density.lap_rho_n[ixyz] + density.lap_rho_p[ixyz]))
e_laprho + c_laprho_1 * ((density.rho_n[ixyz] - density.rho_n[ixyz]) * (density.lap_rho_n[ixyz] - density.lap_rho_p[ixyz])))
* dxyz
= (c_laprho_0 * (density.rho_n[ixyz] * density.lap_rho_0[ixyz])
+ c_laprho_1 * (density.rho_1[ixyz] * density.lap_rho_1[ixyz]))
*= dxyz e_laprho
Pairing energy
todo: fill explanation
E_{pairing, q} = - \int_V\ \operatorname{Re}(\Delta_q)\ \nu^*_q
where q stands for protons or neutrons
= 0.0
e_pairfor ixyz in nxyz:
-= creal(potentials.delta_q[ixyz]) * conj(density.nu_q[ixyz]) * dxyz e_pair_q
where pairing energy for protons and neutrons are calculatede separately and are indicated by the _q
in the code.
Flow energy
todo: fill explanation
E_{flow,q} = \int_V\ (j_{x,q}^2 + j_{y,q}^2 + j_{z,q}^2) / \rho_q
Flow energy is calculated only for the lattice points in which \rho is greater than a threshold value. In the current version of the code it is set to be 10^{-7}
= 0.0
e_flow_q for ixyz in nxyz:
if density.rho_q[ixyz] > 1.e-7:
+= (pow(density.current_x_q[ixyz],2) + pow(density.current_y_q[ixyz],2) + pow(density.current_z_p[ixyz],2))
e_flow_q / density.rho_q[ixyz]
*= dxyz e_flow_q
Current energy
todo: fill explanation
\begin{align} E_j = &C^j_0 \int_V\ (j_{x,n} + j_{x,p})^2 + (j_{y,n} + j_{y,p})^2 + (j_{z,n} + j_{z,p})^2 \\ + &C^j_1 \int_V\ (j_{x,n} - j_{x,p})^2 + (j_{y,n} - j_{y,p})^2 + (j_{z,n} - j_{z,p})^2 \\ + &C^{\nabla j}_0 \int_V\ (s_{x,n} + s_{x,p})(sc_{x,n} + sc_{x,p}) + (s_{y,n} + s_{y,p})(sc_{y,n} + sc_{y,p}) + (s_{z,n} + s_{z,p})(sc_{z,n} + sc_{z,p}) \\ + &C^{\nabla j}_0 \int_V\ (s_{x,n} - s_{x,p})(sc_{x,n} - sc_{x,p}) + (s_{y,n} - s_{y,p})(sc_{y,n} - sc_{y,p}) + (s_{z,n} - s_{z,p})(sc_{z,n} - sc_{z,p}) \end{align}
where s stands for spin density
and sc for spin current
. Moreover constants can be described as follows
\begin{align} C^j_0 &= - C^{\rho\tau}_0 = -\tfrac{3}{16}t_1 + \tfrac{1}{4}t_2\left(x_2 + \tfrac{5}{4}\right)\\ C^j_1 &= - C^{\rho\tau}_1 = \tfrac{1}{8} \left[ t_1 \left( x_1 + \tfrac{1}{2} \right) - t_2 \left( x_2 + \tfrac{1}{2} \right) \right] \\ C^{\nabla j}_0 &= C^{\nabla J}_0 = -\tfrac{3}{4} W_0\\ C^{\nabla j}_1 &= C^{\nabla J}_1 = -\tfrac{1}{4} W_0 \end{align}
= 0.0
e_j for ixyz in nxyz:
+= c_j_0 * (pow(density.j_n_x[ixyz] + density.j_p_x[ixyz], 2) +
e_j (density.j_n_y[ixyz] + density.j_p_y[ixyz], 2) +
pow(density.j_n_z[ixyz] + density.j_p_z[ixyz], 2)) +
pow* (pow(density.j_n_x[ixyz] - density.j_p_x[ixyz], 2) +
c_j_1 (density.j_n_y[ixyz] - density.j_p_y[ixyz], 2) +
pow(density.j_n_z[ixyz] - density.j_p_z[ixyz], 2)) +
pow* ((density.s_n_x[ixyz] + density.s_p_x[ixyz])(density.sc_n_x[ixyz] + density.sc_p_x[ixyz]) +
c_divj_0 (density.s_n_y[ixyz] + density.s_p_y[ixyz])(density.sc_n_y[ixyz] + density.sc_p_y[ixyz]) +
(density.s_n_z[ixyz] + density.s_p_z[ixyz])(density.sc_n_z[ixyz] + density.sc_p_z[ixyz])) +
* ((density.s_n_x[ixyz] - density.s_p_x[ixyz])(density.sc_n_x[ixyz] - density.sc_p_x[ixyz]) +
c_divj_1 (density.s_n_y[ixyz] - density.s_p_y[ixyz])(density.sc_n_y[ixyz] - density.sc_p_y[ixyz]) +
(density.s_n_z[ixyz] - density.s_p_z[ixyz])(density.sc_n_z[ixyz] - density.sc_p_z[ixyz]))
= c_j_0 * (pow(density.j_x_0[ixyz], 2) + pow(density.j_y_0[ixyz], 2) + pow(density.j_z_0[ixyz], 2)) +
* (pow(density.j_x_1[ixyz], 2) + pow(density.j_y_1[ixyz], 2) + pow(density.j_z_1[ixyz], 2)) +
c_j_1 * ((density.s_x_0[ixyz]*density.sc_x_0[ixyz]) + (density.s_y_0[ixyz]*density.sc_y_0[ixyz])) + (density.s_z_0[ixyz]*density.sc_z_0[ixyz]) +
c_divj_0 * ((density.s_x_1[ixyz]*density.sc_x_1[ixyz]) + (density.s_y_1[ixyz]*density.sc_y_1[ixyz])) + (density.s_z_1[ixyz]*density.sc_z_1[ixyz])
c_divj_1 *= dxyz e_j