“Functionals
INTRODUCTION
Code is based on Density Functional Theory [Fiolhais, Nogueira, and Marques (2003), Magierski (2019), Bulgac (2013)]. It is using Skyrme Hartree-Fock approach, for general overview we refer to review article [Klüpfel and Reinhard (2007)] and references therein.
The Skyrme force is an effective interaction depending on a limited number of parameters:
V_{12} = t_0\left(1+x_0P_\sigma\right)\delta \\ + \tfrac{1}{2}t_1\left(1+x_1P_\sigma\right) \left(\boldsymbol{k}^{\prime2}\delta+\delta\boldsymbol{k}^2\right)\\ + t_2(1+x_2P_\sigma)\boldsymbol{k}^\prime\cdot \delta\boldsymbol{k} \\ + \tfrac{1}{6}t_3\left(1+x_3P_\sigma\right)\rho^\gamma \delta\\ + iW_0\left(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2\right) \cdot \left(\boldsymbol{k}^\prime\times\delta\boldsymbol{k}\right)
PARAMETRIZATION
NAME | PAPER | t0 | t1 | t2 | t3 | x0 | x1 | x2 | x3 | gamma | W0 | J^2 | Implemented |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SIII | [Beiner et al. (1975)] | -1128.75 | 395.0 | -95.0 | 14000.0 | 0.45 | 0.0 | 0.0 | 1.0 | 1.0 | 130 | No | No |
SkM* | [Bartel et al. (1982)] | -2645.0 | 410.0 | -135.0 | 15595.0 | 0.09 | 0.0 | 0.0 | 0.0 | 1/6 | 120 | No | Yes |
SLy4 | [Chabanat et al. (1998)] | -2488.913 | 486.818 | -546.395 | 13777.0 | 0.834 | -0.344 | -1.0 | 1.354 | 1/6 | 123 | Yes | Yes |
SLy4d | [Kim, Otsuka, and Bonche (1997)] | -2479.662 | 473.216 | -333.654 | 13487.0 | 0.8122 | -0.7228 | -1.0 | 1.398 | 1/6 | 128 | — | No |
SLy5 | [Chabanat et al. (1998)] | -2484.88 | 483.13 | -549.4 | 13763.0 | 0.778 | -0.328 | -1.0 | 1.267 | 1/6 | 126 | Yes | No |
SLy6 | [Chabanat et al. (1998)] | -2479.5 | 462.18 | -448.61 | 13673.0 | 0.825 | -0.465 | -1.0 | 1.355 | 1/6 | 122 | — | Yes |
SLy7 | [Chabanat et al. (1998)] | -2482.41 | 457.97 | -419.85 | 13677.0 | 0.846 | -0.511 | -1.0 | 1.391 | 1/6 | 126 | Yes | No |
SkP | [Dobaczewski, Flocard, and Treiner (1984)] | -2931.696 | 320.6182 | -337.4091 | 18708.96 | 0.29215 | 0.65318 | -0.53732 | 0.18103 | 1/6 | 100 | Yes | Yes |
TODO: SKa, SGI, SkOP1, SkOP2, SLy family, SkX, SeaLL1, SKMP, SkI phd thesis