“Functionals

INTRODUCTION

Code is based on Density Functional Theory [Fiolhais, Nogueira, and Marques (2003), Magierski (2019), Bulgac (2013)]. It is using Skyrme Hartree-Fock approach, for general overview we refer to review article [Klüpfel and Reinhard (2007)] and references therein.

The Skyrme force is an effective interaction depending on a limited number of parameters:

V_{12} = t_0\left(1+x_0P_\sigma\right)\delta \\ + \tfrac{1}{2}t_1\left(1+x_1P_\sigma\right) \left(\boldsymbol{k}^{\prime2}\delta+\delta\boldsymbol{k}^2\right)\\ + t_2(1+x_2P_\sigma)\boldsymbol{k}^\prime\cdot \delta\boldsymbol{k} \\ + \tfrac{1}{6}t_3\left(1+x_3P_\sigma\right)\rho^\gamma \delta\\ + iW_0\left(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2\right) \cdot \left(\boldsymbol{k}^\prime\times\delta\boldsymbol{k}\right)


PARAMETRIZATION

NAME PAPER t0 t1 t2 t3 x0 x1 x2 x3 gamma W0 J^2 Implemented
SIII [Beiner et al. (1975)] -1128.75 395.0 -95.0 14000.0 0.45 0.0 0.0 1.0 1.0 130 No No
SkM* [Bartel et al. (1982)] -2645.0 410.0 -135.0 15595.0 0.09 0.0 0.0 0.0 1/6 120 No Yes
SLy4 [Chabanat et al. (1998)] -2488.913 486.818 -546.395 13777.0 0.834 -0.344 -1.0 1.354 1/6 123 Yes Yes
SLy4d [Kim, Otsuka, and Bonche (1997)] -2479.662 473.216 -333.654 13487.0 0.8122 -0.7228 -1.0 1.398 1/6 128 No
SLy5 [Chabanat et al. (1998)] -2484.88 483.13 -549.4 13763.0 0.778 -0.328 -1.0 1.267 1/6 126 Yes No
SLy6 [Chabanat et al. (1998)] -2479.5 462.18 -448.61 13673.0 0.825 -0.465 -1.0 1.355 1/6 122 Yes
SLy7 [Chabanat et al. (1998)] -2482.41 457.97 -419.85 13677.0 0.846 -0.511 -1.0 1.391 1/6 126 Yes No
SkP [Dobaczewski, Flocard, and Treiner (1984)] -2931.696 320.6182 -337.4091 18708.96 0.29215 0.65318 -0.53732 0.18103 1/6 100 Yes Yes

TODO: SKa, SGI, SkOP1, SkOP2, SLy family, SkX, SeaLL1, SKMP, SkI phd thesis